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SUMMARY 

The Craig model (assuming a Langmuir isotherm) has been used by us 
previously to successfully simulate isocratic high-performance liquid chromato- 
graphic (HPLC) separation in a mass-overload mode. Here we have extended this 
approach to the case of gradient elution for large samples. These simulations support 
our earlier conclusion that so-called “corresponding” isocratic and gradient separa- 
tions provide similar sample resolution when the sample size is the same. 
“Corresponding” separations refer to the case where isocratic retention k’ is equal to 
average gradient retention E, and where other conditions (column, flow-rate, etc.) are 
the same. Craig simulations reported here also provide further insight into the factors 
that affect preparative HPLC separations under mass-overload conditions. 

INTRODUCTION 

High-performance liquid chromatography (HPLC) is being used increasingly 
for the separation and purification of peptides and proteins’*2, usually in a gradient 
elution mode. These separations are now carried out on a pilot plant or process scale, 
involving sample sizes of grams to kilograms. It is therefore becoming increasingly 
important to have a good understanding of how separation varies with experimental 
conditions, including sample mass. Ideally, we would like to be able to predict 
separation quantitatively as a function of different separation variables. Even more 
important is the development of general relationships between preparative separation 
and various experimental conditions including sample size; these relationships should 
allow a better understanding by practical workers of how to optimize a particular 
separation. 

Several groups have reported results for the mass-overloaded separation of 
protein samples as a function of sample size, column type (particle size, pore-diameter, 
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etc.) and other variables - 3 lo While this work includes fundamental studies that have . 
been correlated with theoretical models ‘*‘, the remaining studies are more empirical 
and do not encourage quantitative generalizations. We have approached this problem 
from a different direction, starting with simple systems that allow the construction of 
quantitative and detailed models that describe the separation process. Earlier,work 
from our group has resulted in the development of general theories for (a) the 
analytical-scale separation of large biomolecules by HPLC” and (b) the preparative 
separaton of small molecules 12-16 In the present series of papers, we hope to extend . 
this treatment to include the case of large samples of peptides and proteins separated 
by gradient elution. 

As a first step, we consider in this paper the mass-overloaded separation of small 
molecules by gradient elution. We have previously treated this subject in preliminary 
fashion”. There it was shown that the same resolution results from “corresponding” 
isocratic and gradient elution systems, when sample size and other conditions are 
comparable. Since it is now possible to predict isocratic separation in an overload 
mode by means of our model16, it follows that gradient separations can be treated in 
terms of equivalent (“corresponding”) isocratic separations. One’ aim of the present 
paper is to further confirm the conclusions reached in ref. 17. Additional questions also 
arise for the case of protein samples and for severely overloaded runs (which are more 
often practical in separations of protein samples). For these and other reasons, we have 
expanded our treatment of ref. 17 as described in the present paper. The following 
discussion is directed primarily at reversed-phase separation, but our general 
conclusions should apply qualitatively to other HPLC procedures as well. 

THEORY 

Craig-distribution model for gradient elution 
The Craig-distribution model has been used previously as an approximation to 

various chromatographic processes, e.g., isocratic chromatography with small 
samples “, the generation of artifactual peaks as a result of competitive or cooperative 
sorption effectsig, and (by us) the simulation of mass-overloaded isocratic HPLC’29’4. 
Its extension here to the case of mass-overloaded gradient elution is similar to that 
described in ref. 12. 

We assume a Langmuir isotherm, which -with certain additional approxima- 
tions (see ref. 12)-- yields the following relationships 

(wd4lw, = ~0CJO4 + k0G) (1) 
wh = KwxsncYwsl + Cd* (2) 
R = Gltwx~) (3) 

Here w, is the mass of solute X in the stationary phase of a Craig stage, n, is the 
number of Craig stages in the column, w, is the saturation uptake of X by the stationary 
phase for the entire column, k. is the value of the capacity factor k’ for a small sample 
(no mass overload), C, is the concentration of X in the mobile phase, and $ is the phase 
ratio (w,/V,,,, where V,,, is the volume of mobile phase in one stage). 

R is not definable by an explicit function of k. and w,, thus requiring a numerical 
procedure for calculating R for each stage after each mobile phase transfer. 
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Previously’ 2, we used a polynomial in W, for predefined values of kO. This approach is 
not practical for gradient elution, because a very large number of different kO values 
are involved in each simulated run. An iterative solution was considered to be too 
time-consuming to allow its use with large numbers of Craig stages (n,). As an 
alternative, we were able to construct an empirical algorithm which has been found 
accurate within +_2% (average) in R over wide ranges in kO and w, (see Appendix I). 

Conditions for a gradient run are summarized by values of kOg, b and t,,. The 
quantity kOs refers to the value of kO for the solute at the beginning of the gradient, to is 
the column dead-time, and b is a gradient-steepness parameter defined by*’ 

log ki = log keg - b(t/to) (4) 

Here ki refers to the value of k. at the column inlet at time t after the start of the 
gradient. Eqn. 4 defines a so-called linear-solvent-strength gradient20, which is 
assumed in the present treatment. In our Craig model for gradient elution under mass 
overload conditions, the value of k. (ki) for the first Craig stage was changed in 
accordance with eqn. 4, and transferred successively (with the associated mobile phase 
volume) to later stages as in ref. 12. 

Bandwidth vs. solute mass in isocratic separation (Craig model) 
In the following treatment it is useful to compare bandwidths from cor- 

responding isocratic and gradient separations, as obtained from the Craig model. 
Knox and Pyper have shown (ref. 21 with modifications of ref. 16) that bandwidth in 
mass-overloaded separations can be expressed as 

N/No = Ml + (p/4) bl (5) 

where N is the plate number for a band of interest, No is the value of N for a small 
sample, p is an adjustable parameter assumed equal to 1 by Knox and Pyper*, and w,, 
is given by 

wxn = [kol(l + ko)12 No W&d (6) 

Finally, bandwidth W is equal to 

W = 4 to (1 + k,) N-“2 (7) 

Eqn. 5 correlates well with experimental data when a value of p = 1.5 is assumed16. 
Comparisons of bandwidths from Craig simulations with experimental values show a 
2.4-fold discrepancy in corresponding values of w,13*15 , suggesting that p should equal 
(1.5/2.4) = 5/8 for the application of eqn. 5 to bandwidths from Craig simulations. 
This hypothesis is tested in Fig. 1, where experimental values of (N/No) from Craig 
simulation’2 are plotted vs. w,,. The solid curve predicted by eqn. 5 with p = 5/8 fits 

l Poppe and Kraak find p = 0.9 in their definitive early paper on mass-overload efhts in HPLC (see 
eqn. 15 of ref. 22). 
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Fig. 1. Values of (N/N,,) from Craig simulation I2 vs. loading function w,. (0) n, = 200; (0) n. = 600; (A) 
?I, = 1000; (-) qn. 5, p = 5/8; (---) best-fit curve. 

these data reasonably well. At this time, it is not known why this discrepancy (different 
values of p) exists for experimental vs. Craig-simulation bandwidths. 

When the sample size IV, is large, overloaded bands will assume a right-triangular 
shapei6, and bandwidth can be approximated by 

w = to (ko - K) (?a) 
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Fig. 2. Hypothetical solute bands showing equal resolution in [a) isocratic and (b) gradient elutlon. 
Definition of small-sample retention times (ts and 13 and baseline bandwidths ( W, and I+‘,,,). See text for 
details. 
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The quantity k’ is measured from the band maximum. For large samples, w,, will also 
be large, and under these conditions eqns. 5-7a yield (approximately) 

w, = (4IJ WMl - w/fw12 (8) 

Experimental values of w, from ref. 18 (summarized in refs. 13 and 15) correlate well 
with eqn. 8, yielding an average value ofp = 0.8 ) 0.2 (1 S.D.). This is reasonably close 
to the expected value, p = 5/8. 

Bandwidth vs. solute mass in gradient elution 
For the case of two solutes X and Y that are separated under conditions of 

mass-overloaded HPLC, it has been shown that the resulting resolution will be the 
same in “corresponding” isocratic and gradient separations1 ‘. “Corresponding” 
systems in this case mean that values of the parameter b are approximately equal for X 
and Y in the gradient separation, and the average (isocratic) value of k,, for compounds 
X and Y equals (1 / 1.15b) in the gradient run. This situation is illustrated schematically 
in Fig. 2 for a sample size such that the two bands just touch in each separation (equal 
resolution). The baseline bandwidths, W, (isocratic) and W,,. (gradient) for compound 
Y, are defined in Fig. 2, as are the retention times (small sample, see ref. 16) for bands X 
and Y in isocratic (tRx, tRy) or gradient (tgx, teu) elution. 

From Fig. 2 we obtain the following relationships: 

wy = tRy - fRx (9) 

and 

WY. = t,, - t,, (10) 

The final bandwidth W (either isocratic or gradient) is the sum of contributions from 
(a) dispersion within the column (for a small sample) W,, and (b) mass-overload of the 
column W,,“: 

W, for isocratic HPLC is given by 

w, = ; tR,, N; ‘I2 (12) 

The quantity W,, can be derived as follows. W,, is the bandwidth that would be 
observed for a very large sample, where W x W,,. This is equivalent to assuming that 
w, B 1 in eqn. 5, which leads to 

w,h = ((4p) [kO/(l + kO)12 (wy/ws))1’2 fRy 

= z tRy (13) 
Here, k. refers to the value for compound Y. Eqns. 9 and 11 (assuming w, large) then 
give 
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fRx = (1 - 2) tRy (14) 

Since values of tR are given as to0 + ko). eqn. 14 can be written as 

k, = k,, - (1 + k,J Z (15) 

and from the definition of Z (eqn. 13) 

k/k, = 1 - ~4~645/~s>l”~ 

Gradient retention t, for a small sample is given” as 

tl7 = (to/b) lOg(2.3 kos b) + to + tD 

(16) 

(17) 

when the value of k’ at the beginning of the gradient (k,,) is large (so-called “gradient” 
conditions). Here, tD refers to the gradient dwell time. Eqn. 17 can be written for band 
X or Y to give te (tgx or t,,) as a function of kOg for each compound: (k,&, and (kOg)Y 
These values of t, (from eqn. 17) can then be combined to yield 

t gY - tgx = (to/N logKko,),l(ko,)xl (18) 

If we assume equal b values for each band (implying equal values of S = d(log k’)/d cp; 
see ref. 1 l), it can be shown ’ 7 that the gradient parameters kOg and isocratic parameters 
k, and k, are related as 

(ko,),/(ko,)x = k,/k. (19) 

0.4 - 

I I I I I 

0.2 0.4 0.6 0.8 1.0 

wx/ws 

Fig. 3. Failure of the two-term Langmuir equation for larger sample sizes. Values of p/p0 from Craig 
simulations with n, = 200 and kn = 1. 
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Eqns. 10 (IV,,. = IV,,), 16, 18 and 19 give finally 

w,, = t,, - t,, 
= -(to/b) log{1 - [4P(~,/%r'2~ (20) 

Eyns. 11 ( W,,. replaces IV) plus 20 provide a quantitative description of bandwidth in 
gradient elution as a function of experimental conditions. 

Value of p for large values of wx/ws 
We have notedi that eqn. 5 is accurate only for moderate overloading of the 

column (w,/w, < 0.10) i.e. eqn. 5 assumes that a Langmuir isotherm can be 
approximated by the first two terms of a polynomial expansion”. For larger values of 
w,/w,, values of Nare larger than predicted by eqn. 5, corresponding to smaller values 
of the parameter p. If we let p. refer to the value of p in the absence of higher-order 
terms (e.g., for small values of wx/wS), the ratio (p/pa) then represents the magnitude of 
this effect (error in eqn. 5 due to the two-term Langmuir approximation). This is 
further illustrated in Fig. 3 for data (0) from Craig simulations of isocratic elution at 
large values of w,/w,; (p/pa) is plotted vs. w$w,*. This relationship (solid curve in Fig. 3) 
can be represented adequately by the empirical equation 

p/p0 = 1 - O.~(W,/W,)~.~~ (21) 

Eqn. 21 is useful for defining the range of w,/w, values for which eqns. 5,8 and 20 are 
accurate, i.e. where p/p0 x 1. Eqn. 21 can also be used (approximately) for correcting 
these relationships when w,/w, Q 1. 

Measurement of column saturation-capacity w, 
The effective use of preparative HPLC requires an initial estimate of the column 

capacity w,. This can be determined as described in ref. 17 from the change in retention 
(t,) with sample mass for an individual band X. There, the change in t, which results 
from a large sample-mass w, vs. a small sample of X was derived: 

At, = (to/b) log(k'lko) (22) 

Here (k/k,) refers to retention values for a corresponding isocratic separation. 
Combining eqns. 8 an 22 then gives 

w, = (4p w-J/[1 - 10-@‘to)~t~]2 (23) 

Alternatively, we can derive an expression for w, from the bandwidth W,,. (gradient 
elution) for a sample-mass w, vs. the bandwidth W. for a small sample of X. Eqn. 11 
first allows us to calculate W,, from values of WY. and Wo; rearrangement of eqn. 20 
then yields 

w, = (4p w,)/[l - 10-(b’tcJw,h]3 (24) 

* The dark circle in Fig. 3 for w,/w. = 1 is inferred from a preceding isocratic relationship, eqn. 17 of 
ref. 16, taking into account the 2.4-fold difference in p values (Craig vs. experimental). 
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Eqns. 23 and 24 are essentially the same relationship. In eqn. 23 the bandwidth is 
approximated by At,, whereas in eqn. 24 the bandwidth is measured directly. For large 
values of w, and/or N,,, At, approaches IV,,_ and the two equations become equivalent. 

Blockage effects 
For sufficiently large samples (e.g., WJws > 0.05), it is found that adjacent 

bands X and Y affect the elution of each other (“mixed-isotherm” effects14*’ 5). The 
major result is earlier elution and a narrowing of the less-retained band X. Similar 
effects are observed in gradient elution ” This phenomenon, which we term . 
“blockage”, can be quantitatively described by means of a simple model. It is assumed 
that the second compound Y competes with X for sorption onto the initial part of the 
column, during the migration of X through the column. The magnitude of this effect 
can be quantitatively described in terms of a shortening (or blockage) of the column by 
a factor x, so far as the elution of X is concerned. Band X then moves through the 
shortened column more quickly, with less band broadening. 

Blockage is expected to be more important in the gradient separation of peptides 
and proteins, because (for various reasons) larger samples can be conveniently 
injected. We therefore need to know how blockage affects gradient elution separation 
in a mass-overload mode. The (equivalent) fractional shortening x of the column (for 
elution of band X) as a result of the presence of band Y is described by 

x = f,X (wC/%) (25) 

The empirical blockage-factor, fyX is a function of the ratio of isocratic ko values (k, 
and k,) for Y and X: 

f, = 2.25 [(k,/k,) - 1]-o.33 

or, for k,/kX > 10 

f,x = 1 (264 

The displacement of band X as a result of blockage is illustrated in the hypothetical 
(mass-overloaded) example of Fig. 4 (gradient elution). The two bands would just 
touch if there were no interaction (blockage) between them, as shown by the separate 
injection of X (Fig. 4a) and Y (Fig. 4b). After injection of the mixture (Fig. 4c), 
however, blockage of the column by Y results in the displacement of the tail of X by the 
time At. This displacement At in turn determines the effect of blockage on separation. 

In the case of isocratic separation, we can predict that At will be given by 

At = x k. to (isocratic) (27) 

This is tested in Table I for the isocratic separation of hydroxyethyltheophylline (HET) 
and 7-/I-hydroxypropyltheophylline (HPT), reported in ref. 15. Good agreement is 
found between experimental values of At and values from eqn. 27. 

The extension of eqn. 27 to gradient elution suggests that the band displacement 
At will be equivalent to that in isocratic elution, if there is a corresponding change in 
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I 
Fig. 4. Illustration of the effect of”blockage” on mass-overloaded separations by gradient elution. See text. 

i& for the gradient separation by a factor (1 - x). The predicted change in frx (see Fig. 
2) is then (eqn. 17) 

At = (to/b) log(1 - x) (gradient) (28) 

The importance of blockage in a gradient separation can be inferred by comparing At 
(eqn. 28) with FV,. (eqns. 11 and 20). When At is small compared to W,,., blockage can 
be ignored. Alternatively, when At is not small compared to WY., it is important to 
correct predictions of separation (resolution) by means of eqn. 28. 

TABLE I 

QUANTITATIVE PREDICTION OF BAND DISPLACEMENT At DUE TO “BLOCKAGE” 

Value of At for HET o() as a result of blockage by HPT (Y). Data from ref. 15; see text for details. 

WX 
(mgl 

(w,/w,) Band displacemenr At 

Experimental Calculated* 

2.5 0.0104 0.10 0.07 
10 0.042 0.33 0.28 
25 0.104 0.70 0.70 

* Eqn. 27; variation of p/p0 accounted for in derivation of eqns. 25 and 26. 
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Effect of koe on mass-overloaded elution bands: limits on bandwidth in gradient elution 
If sample size is increased indefinitely in isocratic elution, the solute band will 

continue to increase in width until the band front runs into to, i.e. when w, approaches 
w,. This is illustrated in Fig. 5a for some representative Craig simulations (isocratic 
elution, varying sample size). If the sample size is likewise increased in gradient elution, 
the band widens up to a certain point (as w, approaches wJ, but no further. In this case 
the band may not run into to. This is illustrated in Fig. 5c for corresponding 
mass-overloaded separations by gradient elution (ko, = 1000). That is, under gradient 
conditions such that k. is large, there is no bleed of sample from the column -as long 
as w, < w,. We also see (Fig. 5c) that there is no elution before a time t/to = 3, 
corresponding to a (small sample) k’ of 100 at this point in the gradient. 

If gradient conditions are changed so as to vary kos (e.g., change the starting 
concentration of organic solvent in the mobile phase), here will generally be little effect 
on the elution band as long as kOg > 100. The band will simply be displaced in the 
chromatogram by a distance corresponding to the difference in small-sample t, values. 
This is illustrated in Fig. 5b for the same separations as in Fig. 5c, except for kos = 100 
(instead of 1000). 

As a practical consequence of the behavior illustrated in Fig. 5, gradient bands 
will usually broaden up to the point where w, = wS, and then stay the same size for 
further increase in w,. The sample mass in excess of w, will then be eluted at to. This can 
confuse the measurement of w, by means of eqn. 20, if column bleed (when w, > w,) is 
overlooked. 

EXPERIMENTAL 

No new experimental data are reported in this paper. Computer simulations 
were carried out on an IBM-XT personal computer. Bandwidths reported here are 
usually “cumulative” values, measured as in ref. 12. Retention times are variously 
peak-maximum values or cumulative values, and are specified 

i\ 

a 

wx/ws = 10 
-5 

\ _ 
(expanded) ' ' 

1 \ 

wx/ws = 0.8 I \ 
I 

when discussed. 

Fig. 5. 
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1 2 3 4 5 

C 

4 5 6 7 

t/to 
Fig. 5. Mass-overload compared in isocratic VS. gradient elution, and for different values of ko. Craig 
simulations, n, = 100; (a) isocratic separation, k0 = 1.75; (b) gradient elution, kol. = 100, 6 = 0.5; (c) 
gradient elution, koS = 1000, b = 0.5. 
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RESULTS AND DISCUSSION 

Craig simulations were carried out as described in Theory for a broad range of 
separation conditions (varying values of kOg, 6, w&u, and n,). Data for small samples 
(wX/wS = 10W5) were first compared with corresponding results from rigorous theory 
(which is applicable in this case 20, but not for large samples), as a means of verifying 
the accuracy and applicability of these Craig simulations. Then, additional compari- 
sons were made of Craig-simulated bandwidths VS. values calculated by means of eqn. 
20, as a means of (a) further verifying the utility of Craig simulation for large samples, 
and (b) confirming the scope and accuracy of eqn. 20. Finally, some additional 
questions concerning gradient elution under mass-overload conditions were examined 
by means of Craig simulations. 

Verification of Craig simulations for small samples 
For the case of a small sample (no mass overload), retention time in gradient 

elution is given” as 

t, = (to/b) lOg[(2.3ko&) + 11 + to + tD (29) 

In the case of Craig simulations, we can assume tD = 0. Likewise, baseline bandwidth 
W. (or IV,.) is given1 ’ as 

We = 4G to (1 + [kos/(2.3ko,b + l)]} i’Vi 1’2 (30) 

TABLE II 

COMPARISON OF GRADIENT ELUTION RETENTION (r& AND BANDWIDTH (W = W,,) FOR 
A SMALL SAMPLE (wx/w, = 10-5): CRAIG SIMULATIONS VS. EXPLICIT CALCULATIONS 

k 0# nc b t&o* W/to 

Craig Eqn. 29 Craig Eqn. 30 

10 20 0.05 3.21 3.19 0.932 0.938 
50 3.20 3.19 0.586 0.602 

100 3.20 3.19 0.414 0.428 
200 3.20 3.19 0.293 0.303 

loo 10 0.5 5.17 5.13 1.38 1.34 
20 5.15 5.13 0.974 0.970 
50 5.14 5.13 0.614 0.622 

100 5.13 5.13 0.434 0.440 

loo 50 

Average error _+0.02% 

0.1 14.79 14.80 2.50 2.57 
0.2 9.36 9.36 1.34 1.35 
1.0 3.38 3.36 0.360 0.374 
2.0 2.34 2.33 0.224 0.238 

*2% 

l Cumulative values of t, (50% elution of band, ref. 12). 
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Fig. 6. Band shape in mass-overloaded gradient elution. Craig simulations; n, = 200, /co8 = 100, b = 0.50. 
Values of w,/wS indicated in Figure. Similar band shapes observed for other values of b. 

The quantity G is a gradient compression factor that can be calculated as a function of 
bzo. Values of& and Wo, determined from eqns. 29 and 30, are compared in Table II 
with values determined from Craig simulations. Good agreement is seen for all cases 
examined, even for small values of n,. 

Characteristics of mass-overloaded sample bar& in gradient elution 
Band shape. In isocratic HPLC, mass-overloaded solute bands assume a 

characteristic “right-triangle” appearance, as illustrated in Fig. 2 and discussed in refs. 
16 and 21. As sample size is increased in gradient elution, the resulting bands 
eventually resemble a rounded right-triangle or “shark fin”“. However, many 
extraneous factors can affect band shape, apart from the separation per se. For this 
reason it is interesting to examine band shape in gradient elution as sample size is 
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increased, by means of Craig simulations (which are not subject to these extraneous 
effects), 

Fig. 6 illustrates typical band shapes for mass-overloaded gradient elution, as 
obtained from Craig simulations. For small samples (e.g., W.&V, g O.Ol), the bands are 
near-Gaussian with a tendency to slight fronting (due to the gradient). Moderate 
overloading of the column results in bands with a right-triangle appearance, much as in 
isocratic elution (e.g., for w,/w~ = 0.05 in Fig. 6). Further increase in sample size (e.g., 
for w,/w~ = 0.20 or 0.40) gives rise to the “shark-fin” bands noted above. Still larger 
samples (e.g., w,/w, = 0.70 in Fig. 6) lead to further band distortion with an extended 
sloping top, but practical HPLC separations seldom allow this degree of column 
overloading. 

Similar bandshapes (as in Fig. 6) result for other values of N,,, as long as the ratio 
(NO w&J is the same, e.g., multiplying No by 4 for the separations in Fig. 6 should 
result in the new band for w.Jw, = 0.05 resembling the old band (Fig. 6) for w.& = 
0.20. 

The rounding of the elution band relative to isocratic separation is mainly due to 
“gradient compression” during elution of the band from the end of the column. That 
is, the shape of the band on the column is more nearly that of a right triangle, but 
during elution the band-tail is accelerated (and rounded) by the gradient. This is 
illustrated in Fig. 7 for sample bands just before (-- -) and after they leave the column 
(-), in both (a) isocratic and (b) gradient elution. The corresponding bands in Fig. 7 
have been superimposed for a better comparison of their shapes immediately before 
and after elution. This example is typical for intermediate sample sizes (0.05 < w,/w, 
< 0.40). 

Measurement ofbandwidth. Bandwidth Win mass-overloaded gradient elution is 
conveniently measured as shown in Fig. 6 (for w,/w, = 0.20). For larger plate numbers 
(No > 200), the extrapolated tail of the band is approximately equal to the retention 
time tg for a small sample, similar to the case for mass-overloaded isocratic separation 
(see example of Fig. 2). This was true ( f 0.1 to), for example, in the case of Craig 
simulations with n, = 200, k,,, = 100, b = 0.5, and w,/w, varied from 0.05 to 0.40. This 
observation can in some cases simplify the measurement of bandwidth in mass-over- 
loaded separations, e.g., when two bands severely overlap. In the present study, values 
of Ware reported on a 4-a basis* (see ref. 12), in order to insure comparability with our 
earlier studies of mass-overloaded isocratic elution by means of Craig simulations. 
Comparison of these (40) values of W with values determined as in Fig. 5 shows 
agreement within +5%, except for (wJw,) > 0.40. 

Bandwidth in mass-overloaded gradient elution 
Craig simulations. Simulations of bandwidth W vs. sample size w, were carried 

out for different conditions (varying n,, kOg, b and w,/w,). Values of W, should be 
independent of No and n,, but this is only true for adequately large values of n,. As an 
example for one set of conditions (kos = 100, b = 0.50, w,/w* = 0.05), the following 
values of W,, vs. n, were found: n, = 20, 50, 100,200,400; Wth/to = 0.33,0.35,0.38, 
0.41, 0.42. For n, > 100, values of W,, are constant within f5%. 

l That is, 2-u bandwidths were determined as in ref. 12 (1684% cumulative elution) and then 
multiplied by 2. 
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Fig. 7. Comparison of band shape on the column (just before elution) with the elution band for 
mass-overloaded separation. Craig simulations with n, = SO, w,/w, = 0.40, (a) isocratic separation, k,, = 1; 
(b) gradient separation, k,, = 100, b = 0.5. 

Values of W were first obtained from these Craig simulations, then eqn. 11 was 
used to derive values of W,,. Fig. 8 shows three sets of W,,, values (different values of b) 
as a function of sample size wX/wS. It is seen that these data points for a given value of b 
fall on a straight line when plotted on a log-log basis as in Fig. 8 (values of W,, do not 
vary with change in ko, as expected when ken is large). An empirical equation describes 
these data with an average error of less than + 5% in W 

W,, = 2.3 (to/b) (w&v~)~.~~ (31) 
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Fig. 8. Dependence of mass-overload contribution to bandwidth (W,,) on sample size W&V,, Craig 
simulations, n, = 200, kop = 100. b = 0.125 (Cl), 0.50 (0). and 2 (A). Solid lines arecalculated from.eqn. 31. 

Eqn. 31 should prove useful in predicting separation in mass-overloaded gradient 
elution because of its simplicity. Experimental values of W,, will be 1 S-fold larger than 
predicted by eqn. 3 1 (for Craig simulation), because of the 2.4-fold larger value ofp in 
experimental systems vs. Craig simulations. However this error cancels, if values of W, 
are measured via eqn. 24. 

Table III compares Craig-simulation values of W (corresponding to the data of 
Fig. 8) with values calculated from eqns. 11 and 20. Good agreement is observed. 

Experimental bandwidths from ref. 17. Eqn. 20 can be applied to experimental 
data reported in ref. 17 for the mass-overloaded elution of HPT by gradient elution. 
For experimental systems, p. = 1.5 rather than 5/8 for Craig simulation. The 
conditions for these runs were as follows: b = 0.35, to = 1.43 min, k. (isocratic) = 3.15 
and No = 5750. The resulting value of W. (eqn. 30) is 0.186 min. Sample size was 
varied from 1.0 to 25 mg for a column whose w, value was determined (isocratic 
measurements”) to be 240 mg. Eqns. 11 and 20 then allowed the prediction of 
bandwidths WY. as a function of sample mass w,. These results are summarized in 
Table IV, with satisfactory agreement between predicted and experimental bandwidth 
values. 

Bandwidth as a function of column plate-number and sample size. This has been 
discussed in detail in refs. 16 and 21 for isocratic separation. The column plate number 
No affects only W. in eqn. 11, meaning that for larger samples the value of No becomes 
less important. This is illustrated in Fig. 9 for Craig simulations based on different 



PREPARATIVE GRADIENT ELUTION HPLC OF PEPTIDES AND PROTEINS. I. 319 

TABLE III 

CRAIG-SIMULATION VALUES OF BANDWIDTH WIN GRADIENT ELUTION: COMPARISON 
WITH VALUES FROM EQNS. 11 AND 20 

Conditions: n. = 100, k,,x = 100, p/p0 from Fig. 3. 

b = 0.50 b = 0.125 b=2 

Craig Calculated Craig Calculated Craig Calculated 

10-s 0.43 0.43 1.45 1.45 0.158 0.158 
0.03 0.50 0.50 1.83 1.77 0.166 0.170 
0.05 0.58 0.56 
0.10 0.80 0.72* 3.34 2.71* 0.220 0.213* 
0.20 1.25 1.13* 
0.40 2.18 2.56* 8.28 10.2* 0.51 0.65* 
0.70 3.60 (2.2 +)* 

* Corrected for difference between Craig simulations and eqn. 5 (dashed vs. solid curves of Fig. 1). 
* Indeterminate value. 

values of No. For example, if WJW, > 0.05, there is no advantage to an No-value 
greater than 500, i.e. the same separation (same bandwidths) will result. 

Column saturation capacity w, 
The saturation capacity of the column is the main factor that determines 

maximum sample size. A knowledge of the value of w, is therefore important for 
designing efficient preparative-scale separations. Eqns. 23 and 24 furnish a basis for 
estimating values of w, from two gradient runs, one with a small sample and one with a 
value of w, sufftcient to result in appreciable band broadening due to mass overload. 
We will now examine the use of these two relationships for measuring w,, using Craig 
simulations to illustrate their use and examine their reliability. 

TABLE IV 

COMPARISON OF EXPERIMENTAL BANDWIDTHS WITH VALUES PREDICTED BY EQNS. 11, 
20 AND 22 

Data for HPT as a function of sample size in reversed-phase gradient elutionr’; see text for details. 

WX 

(mg) 
WXIW, PlPo* WY. (min) 

Experimental Calculaled*f 

1.0 0.004 0.94 0.37 0.35 
2.5 0.010 0.92 0.55 0.52 

10 0.042 0.85 1.13 1.11 
25 0.104 0.77 2.07 2.10 

* From Fig. 3. 
* Eqns. 11 and 20 with p. = 1.5; e.g., p = 0.94 1.5 for w, = 1 mg. 
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Fig. 9. Dependence of bandwidth W on sample sze wx/wS and plate number No (for a small sample). 
Calculations based on eqns. 11 and 31 (derived from Craig simulations). 

The sample size wX used in the mass-overloaded gradient run must be large 
enough to achieve a significant increase in bandwidth or decrease in retention time t,. If 
a change in retention time is used to estimate W, (eqn. 23), it is also necessary that the 
column plate number No be large enough so that the shape of the elution band closely 
approaches a “shark-tin” as in Fig. 2. That is, eqn. 23 assumes that bandwidth can be 
approximated by At,. Consider the following example based on Craig simulations for 
n, = lOO,ko, = 100 and b = 0.50 (p = 5/8). A W, value of 100 mg was assumed, and for 
sample-sizes W, of 10e5 and 5 mg the following results were obtained: (10S5 mg), W = 
W. = 0.434 to, t, = 5.13 to; (5 mg), W = 0.58 to, rg = 5.00 to. A value of W,, from eqn. 
11 was obtained first: W,, = 0.25 to. Eqn. 24 was next used with this value to estimate 
w,, assumingp = po: w, = 120 mg. A value of w&v, = 0.025 was then calculated, based 
on this initial estimate of w,. The latter value of WJW, was used with eqn. 21 to estimate 
p/p0 = 0.88, andp = 0.55. Recalculation of wS with this new value ofp (eqn. 21) gave 

WS = 106 mg. This, in turn, was used to generate new values of w,/w, and p, giving a 
final value of w, = 104 mg. This result from successive approximations is reasonably 
close to the actual value (100 mg) used in the original Craig simulations that generated 
the starting data for this example. Repetition of these calculations for w, values of 10, 
20 and 40 mg gave w, values of 86-l 19 mg (after correction for the failure of eqn. 5 
shown in Fig. 2 -dashed vs. solid curves). 

The similar use of eqn. 23 (instead of eqn. 24) with the change in t, for a 3-mg 
sample gave w, = 382 mg (an error of 282%!). The reason for this is that the low plate 
number for this run (No = 160) resulted in a considerable rounding of the elution 
band, with only a poor resemblance to a “shark-fin”. This illustrates one limitation in 
the use of eqn. 23 and suggests that eqn. 24 may be better suited for estimating w, 
values. 
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Fig. 10. Resolution in “corresponding” isocratic and gradient systems as a function of sample size W&V.. 
Craig simulations; isocratic conditions: n, = 76 (X), 123 (Y), (A$, = 180); ko = 0.74 (X) and 2.22 Cy); 
gradient conditions: n, = 100 (No = 180); b = 0.68 (X and Y); kor = 100 (X) and 300 (Y). 

Resolution in isocratic vs. gradient elution 
Earlier, we showed” for “corresponding” isocratic and gradient systems that 

the resolution of any two bands in the chromatogram should be the same when sample 
sizes are equal in each run. This demonstration was based both on theoretical 
arguments and experimental examples. Fig. 10 provides a further confirmation of this 
conclusion, based on Craig simulations. Conditions for the isocratic runs are: No = 
180 and k. equal 0.74 and 2.22 for compounds X and Y, with sample size w&vS varied 
as shown in Fig. 10. The corresponding gradient runs have an average value ofk’ (small 
sample) equal to the geometric mean of the isocratic k,, values: E = 1.28 and b = 
(l/1.15 @ = 0.68, with No = 180. Values of koe for the gradient runs were selected 
equal to 100 and 300 for X and Y (note eqn. 19); the separation factor CL is equal to 3.0 
for both the isocratic and gradient runs. 

Comparing the various isocratic and gradient simulations of Fig. 10, we see that 
equivalent resolution is obtained when the sample size is the same -as predicted for 
“corresponding” separations . ” Values of resolution R, in Fig. 10 are calculated from 
bandwidths at half-height: 

R, = 1.18 (tz - tJ(W, + IV,) (32) 
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Here tl and tz are the measured retention times for the first and second bands, and W1 
and W2 are the bandwidths of each band, measured at half-height. Eqn. 32 is more 
convenient to use than the usual equation of R, based on the measurement of baseline 
bandwidths, particularly for preparative separations. 

CONCLUSIONS 

Craig simulations of mass-overloaded gradient elution HPLC were carried out 
in order to better define the relationship between separation, sample size and 
experimental conditions. A similar approach, used previously for isocratic elu- 
tion’2,14, resulted in useful comparisons between Craig simulations and actual 
experimental systems . 13*1 ’ Results from gradient-elution Craig simulations carried 
out in this study are in general agreement with theory derived here and elsewhere”; 
this supports the validity of both the Craig simulations and our present theory for these 
separations. A limited set of experimental data reported previously (small molecules, 
ref. 17) also agrees with the equations derived here. 

Resolution and bandwidth can be predicted quantitatively as a function of 
sample size and different experimental conditions, using any of three different 
relationships derived here. As noted earlier i3,15*i6, bandwidths from Craig simula- 
tions are generally smaller than corresponding experimental bandwidths -for reasons 
that are still not clear. The Knox-Pyper treatment of mass-overloaded isocratic 
HPLC” and our adaptation of that modeli is limited to relatively small samples, 
because of the use of a 2-term approximation to the Langmuir isotherm. In this paper 
we have examined these complications and reconciled them in terms of an empirical 
factor p. The use of this empirical factor allows semi-quantitative predictions of 
bandwidth in mass-overloaded isocratic or gradient elution for any sample size. We 
have also extended the present treatment to include mixed-isotherm effects (“block- 
age”) that are involved in the gradient elution separation of any multi-component 
sample. 

In the design of preparative separations, it is important to be able to estimate the 
column saturation-capacity w,. Here we describe a simple procedure for determining 
w, from only two experimental gradient-elution runs. The use of changes in bandwidth 
as sample size is varied seems to be the preferred approach. 

We believe that the present study provides a basis for a better understanding of 
the preparative separation of any sample by gradient elution. The Craig-simulation 
model has also been established as a useful tool for exploring questions that are too 
complex to model analytically. Subsequent papers will illustrate this potential in the 
study of various aspects of the preparative separation of protein samples by means of 
gradient elution. 

GLOSSARY OF SYMBOLS 

b gradient steepness parameter, equal to V,,,ArpS/t,F 
c, c, c” empirical constants defined in eqns. 4, 9 and 10 of ref. 23 

2 

concentration of solute in mobile phase (mg/l) 
“blockage” factor; see eqn. 27 

F mobile phase flow-rate (ml/min) 
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gradient compression factor2’ 
effective or average value of capacity factor K during gradient elution 
(for a small sample) 
capacity factor of a solute band; here K is used to denote the K value for 
a mass-overloaded band, in distinction to k. for the band when the 
sample size is small 
capacity factor k. of the solute at the column inlet at some time during 
gradient elution (eqn. 4) 
isocratic capacity factor K for a small sample 
values of k. for two different sites 1 and 2; eqn. 2 of ref. 23 
value of k. for a solute at the beginning of the gradient 
values of kOg for solutes X and Y 
values of k. for solutes X and Y (isocratic elution) 
column plate number (eqn. 5) 
value of N for a small sample 
empirical factor that takes into account differences in band- 
broadening between experimental and Craig systems, as well as failure 
of 2-term Langmuir isotherm approximation for larger samples; for 
w,/w, < 0.10, p = p. is equal to 1.5 for experimental systems and 5/8 
for Craig simulations (eqn. 21) 
value ofp for small values of w,/w,; equal to 5/8 for Craig simulations, 
1.5 for experimental systems 
fraction of total solute in the mobile phase (eqn. 3) 
resolution of two adjacent bands; defined here by similar eqns. 34 (this 
paper) or 5 (ref. 5) 
in isocratic reversed-phase HPLC, d (log K)/dq 
dwell time of HPLC system (min) 
retention time (min) in gradient elution 
value of t, for solute X or Y (small sample) 
gradient time (min) 
column dead-time (min) 
retention time (mm) in isocratic elution 
value of tR for solutes X and Y (small sample) 
column dead-volume (ml); equal to F to 
column saturation capacity (mg); maximum amount of solute that can 
be held by the stationary phase 
values of w, for two different sites (1 and 2) in the stationary phase; see 
eqn. 2 of ref. 23 
mass of sample X injected onto the column (mg) 
loading function, equal to [k,/(l + ko)12 No (w,/w,) 
mass of sample X in the stationary phase (mg) 
bandwidth (min); defined as in Fig. 2 (for wJwS = 0.2) 
value of W for a small sample 
contribution to W from mass overloading (eqn. 11) 
value of W for solute Y in isocratic separation (Fig. 2) 
value of W for solute Y in gradient elution (Fig. 2) 
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equivalent reduction in column length because of “blockage” of the 
front of the column by a second band Y; band X (less retained) then is 
retained only by the fraction (1 - x) of the column 
solutes X (less retained) and Y (more retained) 
slope of plots of log W,,, vs. log w,; see. ref. 23 (Figs. 5-11) 
function defined in eqn. 13 
displacement of band X as a result of “blockage”; see Fig. 4 
change in t, as a result of column overload (eqn. 24) 
volume fraction of organic modifier in the mobile phase 
change in q during the gradient 
phase ratio, equal to the mass of stationary phase (mg) divided by the 
total mobile phase volume (ml) (in the column or a Craig stage) 

Empirical function for calculating R as a function of kO and sample size 
The function R is determined for each stage after each transfer by means of the 

following algorithm: 
(1) if w, kO > 100 then R = (w, - l)/wx 
(2) define Q = w, (2/w,)-“.* k,, 

if Q < 2 then R = 0.23 Q’.13 
(3) if 2 < Q < 34 then R = 1 - 1.05 Q-o.94 
(4) if Q > 34 then R = (w, - l)/wx 
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